Berberine inhibits hepatic stellate cell proliferation and prevents experimental liver fibrosis.

نویسندگان

  • Xu Sun
  • Xiaodong Zhang
  • Hui Hu
  • Yina Lu
  • Jie Chen
  • Kazuki Yasuda
  • Heyao Wang
چکیده

Proliferation of hepatic stellate cells (HSCs) is central for the development of fibrosis during liver injury. Our aim in this study was to determine whether berberine could inhibit HSC proliferation in vitro and prevent experimental liver fibrosis in vivo. Activated rat hepatic stellate cells (CFSCs) were incubated with various concentrations (0-20 microg/ml) of berberine. After 48 h incubation, berberine significantly inhibited CFSC proliferation and induced cell cycle arrest in G1 phase. Real-time and Western blotting revealed that both p21 and p27 expression was markedly reduced by berberine. Berberine also decreased Akt phosphorylation and FoxO1 phosphorylation, which led to FoxO1 nuclear translocation. Berberine effectively prevented CCl(4)-induced liver fibrosis in mice, which was accompanied by a decrease in the number of activated HSCs. Thus, berberine was able to prevent liver fibrosis by inhibition of hepatic stellate cell proliferation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fucoidan partly prevents CCl4-induced liver fibrosis

Fucoidan, a sulfated polysaccharide extracted from brown algae, has a wide range of biological activities, including anti-inflammatory, anti-viral, and anti-tumor activities. In the present study, we investigated the effects of fucoidan on CCl4-induced liver fibrosis. Administration of fucoidan reduced CCl4-induced acute and chronic liver failure. Hepatic fibrosis induced by CCl4 was also atten...

متن کامل

Orphan nuclear receptor NR4A2 inhibits hepatic stellate cell proliferation through MAPK pathway in liver fibrosis

Hepatic stellate cells (HSCs) play a crucial role in liver fibrosis, which is a pathological process characterized by extracellular matrix accumulation. NR4A2 is a nuclear receptor belonging to the NR4A subfamily and vital in regulating cell growth, metabolism, inflammation and other biological functions. However, its role in HSCs is unclear. We analyzed NR4A2 expression in fibrotic liver and s...

متن کامل

Down-regulation of tTG expression by RNAi inhibits HSC proliferation and attenuates liver fibrosis.

PURPOSE Expressed in hepatic stellate cell (HSC), tTG is involved in fibrotic diseases including human hepatic fibrosis by promoting the cross-linking of ECM and participating in the initiation and/or progression of liver fibrosis. The purpose of this study is to identify whether depletion of tTG could attenuate liver fibrosis. METHODS In this study, primary hepatic stellate cells were isolat...

متن کامل

Berberine Inhibition of Fibrogenesis in a Rat Model of Liver Fibrosis and in Hepatic Stellate Cells

Aim. To examine the effect of berberine (BBR) on liver fibrosis and its possible mechanisms through direct effects on hepatic stellate cells (HSC). Methods. The antifibrotic effect of BBR was determined in a rat model of bile duct ligation- (BDL-) induced liver fibrosis. Multiple cellular and molecular approaches were introduced to examine the effects of BBR on HSC. Results. BBR potently inhibi...

متن کامل

Celecoxib derivative OSU-03012 inhibits the proliferation and activation of hepatic stellate cells by inducing cell senescence.

Liver fibrosis may lead to portal hypertension, liver failure or hepatocellular carcinoma, and predominantly results from the proliferation and activation of hepatic stellate cells. OSU‑03012, a non‑cyclooxygenase‑inhibiting celecoxib derivative, has been previously demonstrated to promote apoptosis in certain cell types, however, its function in hepatic fibrosis remains unclear. In the current...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biological & pharmaceutical bulletin

دوره 32 9  شماره 

صفحات  -

تاریخ انتشار 2009